
Lexical Binding

There are two ways a variable can be used in
a program:

• As a declaration
• As a "reference" or use of the variable

Scheme has two kinds of variable
"declarations" -- the bindings of a let-
expression and the parameters of a lambda-
expression.

The scope of a declaration is the portion of the
expression or program to which that declaration
applies. Like Java and C, but unlike classic Lisp,
Scheme uses lexical binding (sometimes called
static binding), which means that the scope of a
variable is determined by the textual layout of the
program.

Every language has its own scoping rules. For
example, what is the scope of variable y in this
Java program? Could we print y instead of x in
the last line?

public static void main(String[] args) {
int x;
x = 1;
while (x < 10) {

int y = x;
System.out.println(y);
x += 1;

}
System.out.println(x);

}

In Scheme it is tempting to say that the
scope of a variable declared in the
bindings of a let-expression is the body of
the expression, but this isn't exactly the
case. For example

(let ([x 5]) (* ((lambda (x) (+ x 3)) 7) x))

the scope of the [x 5] declaration is only
the second operand of the *-expression.

It is more accurate to say that the scope of a
variable declared in a let-expression or lambda-
expression is the body of that expression unless
that variable also occurs bound in the body.

If the variable occurs bound in the body, we say
that the inner binding shadows the outer binding.

To determine the appropriate binding to which
a bound variable refers:

• Start at the reference (usage of the
variable).

• Search the enclosing regions starting with
the innermost and working outward,
looking for a declaration of the variable.

• The first declaration you find is the
appropriate binding.

• If you don't find such a binding the
variable is free.

Contour diagrams draw the boundaries of the
regions in which variable declarations are in effect:

(lambda (x)

(lambda (y)

((lambda (x) (x y)) x)))

The body of a let or lambda expression determines
a contour. Each variable refers to the innermost
declaration outside its contour.

The lexical depth of a variable reference is 1 less
than the number of contours crossed between
the reference and the declaration it refers to.

For example

(lambda (x)

(lambda (y)

(+ x y)))

In the (+ x y) portion of this expression x
has lexical depth 1, while y has lexical
depth 0.

(lambda (x y)

((lambda (a)

(+ x (* a y))) x)

Here x has lexical
depth 1

Here x has lexical
depth 0

The lexical address of a variable reference
consist of a pair:

a) The lexical depth of the reference
b) The 0-based position of the variable in

its declaration.
We might write this as [depth:position]

For example, consider the expression

(let ([x 3] [y 4])

(lambda (a b)

(lambda (c)

(a (+ (b x) c))))

[1:0] [1:1] [2:0] [0:0]

We could use lexical addresses to completely
replace variable names:

(let ([3] [4])
(lambda 2

(lambda 1
([1:0] (+ ([1:1] [2:0]) [0:2))))

The lexical address is essentially a pointer to
where the variable can be found on the
runtime stack.

